Skip to main content

MongoDB quick thoughts

This time I'm writing of my experiences and random thoughts about MongoDB. Just a quick overview and nothing too profound.

My MongoDB experiences


I've been a part of a development team in two projects that used MongoDB as a database and in addition earlier this year I attended and completed MongoDB for Java developers online course by 10gen, the company behind MongoDB. 

Moving from relational databases to document databases isn't easy. I don't have any real experience with functional programming but I'd imagine moving from object oriented programming to functional programming is some what similar experience as moving from relational databases to document databases. Some of the rules are still the same but there are a lot of differences.

Flexible schemas


MongoDB has flexible schemas meaning that the data model in the collection can be changed per document a any time. I really like this as it gives the opportunity to store only and all the data that is needed per document. 

When the schema is flexible it means that there's no need to store null values for anything. In the example below we have two documents in a collection named "contacts".

{ _id: 1, name: "Joe", email: "joe@foo.com", phone: "1234567"}
{ _id: 2, name: "Andy", phone: "7654321" }

Were storing a contact list in the database where Joe has a email address and that's stored under key "email" and Andy has only phone number. If we were storing this same information in a relational database we'd have to store a null or empty string as Andy's email address because in the schema there's a column for email address.

Having a flexible schema still means that schema and the data model of the application has to be thought well. With the flexibility comes a cost, it means that much of the logic has to be in the application.

Indexes and searching


Another great thing in MongoDB are indexes. They work pretty much the same way as indexes work in relational databases.

Querying is a basic functionality in MongoDB it can be done against any key-value pair in a document collection. Querying is always more efficient if it's done against indexed values.

These are two things that separates document databases from key-value stores where indexing is done only on the key and querying can be done only against the key. There are some separate solutions for key-value store indexing and searching but their not part of the database itself.

Aggregating


Aggregating is a more sophisticated way of searching it gives nice opportunities to modify the search result documents before the answer is returned. This is also a nice tool for querying for statistical data based on the documents.

Replicating and sharding


Replicating is where the data is copied to multiple databases and sharding is where the data is spread between multiple database instances. These two can also be combined where data is sharded and the individual shards are replicated.

Replication is a good way to have to the data backuped and for fault tolerance and it can be used to spread reads against multiple databases. Replication also gives a opportunity to confirm writes to multiple replicas before the write is considered successful.

Sharding is a way to spread reads and writes against multiple databases.

Final thoughts


Since I've used and learned more about MongoDB and document databases I've started to think differently about applications. 

In the past a relational database was the only choice as a database for me but now MongoDB is one of the alternative solutions, more on the other solutions on a later post. This new knowledge that I've gained has had me thinking of how some of the past solutions would have probably worked better if MongoDB had been the choice for a database instead of a relational database.

Popular posts from this blog

Simple code: Readability

Readability, understandability, two key incredients of great code. Easier said than done, right? What one person finds easy to read and understand another one finds incomprehensible. This is especially true when programmers have different levels of understanding on various subjects e.g. object oriented vs. functional or Node.js vs. Java. Even though there are obvious differences between paradigms and programming ecosystems there are some common conventions and ways to lower the barrier. Different approaches It's natural that in programming things happen sequentally e.g. you can have a list of objects and you need to do various things to the list like filter some values out and count a sum of the remaining objects based on some property. With the given list const stories = [   {name: "authentication", points: 43},   {name: "profile page", points: 11},   {name: "shopping cart", points: 24},   {name: "shopping history", points: 15},   {name: &qu

Simple code: Naming things

There are two hard things in programming and naming is one them. If you don't believe me ask Martin Fowler https://www.martinfowler.com/bliki/TwoHardThings.html . In this post I'll be covering some general conventions for naming things to improve readability and understandabilty of the code. There are lots of things that need a name in programming. Starting from higher abstractions to lower we need to name a project, API or library, we probably need to name the source code repository, when we get to the code we need to name our modules or packages, we give names to classes, objects, interfaces and in those we name our functions or methods and within those we name our variables. Overall a lot of things to name. TLDR; Basic rule There's a single basic convention to follow to achiveve better, more descriptive naming of things. Give it a meaningful name i.e. don't use shorthands like gen or single letter variables like a, x, z instead tell what it represents, what it does

Simple code: Simplicity

Simplest solutions are usually the best solutions. We as software developers work with hard problems and solve a lot of small problems every day. Solving a hard problem itself is a hard job. Though in my opinion it's not enough to solve a hard problem in any possible way but a hard problem should be solved with a simple solution. When a developer comes up with a simple solution to a hard problem then they can declare the problem solved. First a disclaimer. Coming up with a simple solution to a hard problems is itself a very hard problem and takes a lot of time, effort and practice. I've seen my share of "clever" solutions for hard problems and the problem with those is that usually the solution itself is so hard to understand that depending on the size of the problem it may take a developer from hours to days or even weeks to understand how that "clever" solution works. It's a rare occasion when a developer has come up with a simple solution to a hard pr