Skip to main content

Dedicated time for learning Python at work

In the spring of 2019 I had the opportunity to use some paid work time for learning something new.
I decided to spend the given time to brush up on my Python knowledge. I had some experience in programming with Python but not much and I didn't have a understanding of Python conventions or ecosystem.

Limited time frame

I had a limited time frame that was split to four sessions. In addition to the time given for each session I spent at least the same amount of time on preparing each session.

First session, the basics

It was quite hard to find a resource that summarised Python basics on a sufficient level but I managed to find Alex Martinelli's slides Python for Programmers from 2007 that contained exactly what I was looking for.
Even though the slides are from over a decade ago and the Python version was 2.x at that time all the information is still applicable to current Python 3.x version as is or with minor changes.

Second session, testing in Python

Python has a good support for automated tests and it wasn't too hard to find two good resources where to learn. First I read a short introduction to Python's unit testing libraries from the Hitchhiker's guide to Python. After that I went through a longer, more profound, tutorial from Real Python.

Third session, functional programming in Python

I knew that Python supported functional programming concepts and the best resource that I could find was Python's own documentation that also explained some of the gotchas I ran into in my earlier Python programming experiments e.g. map function returns a iterator not a list or set or what ever was the input's type.

Fourth and final session, asynchronous programming in Python

With the rise of FRP and the Reactive Manifesto I thought that introducing myself to Python's async IO would be a good idea. For me the Real Python's tutorial on async IO was the easiest to understand and I think it's quite comprehensive.

Syllabus for Python for programmers

  1. Basics, Alex Martinelli's slides http://www.aleax.it/goo_py4prog.pdf 
  2. Testing, the Hitchhiker's guide to Python https://docs.python-guide.org/writing/tests/ and Real Python's getting started with testing in Python https://realpython.com/python-testing/ 
  3. Functional programming, Python's own documentation https://docs.python.org/3.7/howto/functional.html 
  4. Async IO, Real Python's tutorial on async IO https://realpython.com/async-io-python/

Conclusion

It took me around 6 hours to read and somewhat understand the contents of all the resources of the sessions. I already knew Python's syntax and had a solid understanding of other programming languages and I knew all the concepts that were covered.

I haven't worked with Python since the sessions but next time that I will, I'll first browse through these resorces.

Popular posts from this blog

Sharing to help myself

It's been a while since my last post but I have a good excuse. I've been in a new customer project (well new for me) for two months now and have absorbed a lot of new information on the technology stack and the project itself. This time I'll be sharing a short post about sharing code and how it can help the one who's sharing the code. I'll be giving a real life example of how it happened to me. My story Back when I was implementing first version of my simple-todo REST-service I used Scala and Play framework for the service and specs2 for testing the implementation. Since then I've done a few other implementations of the service but I've continued to use specs2 as a testing framework. I wrote about my implementation and shared the post through various services and as a result someone forked my work and gave me some pointers on how I could improve my tests. That someone was Eric Torreborre  the man behind specs2 framework. I didn't take his ref

Simple code: Readability

Readability, understandability, two key incredients of great code. Easier said than done, right? What one person finds easy to read and understand another one finds incomprehensible. This is especially true when programmers have different levels of understanding on various subjects e.g. object oriented vs. functional or Node.js vs. Java. Even though there are obvious differences between paradigms and programming ecosystems there are some common conventions and ways to lower the barrier. Different approaches It's natural that in programming things happen sequentally e.g. you can have a list of objects and you need to do various things to the list like filter some values out and count a sum of the remaining objects based on some property. With the given list const stories = [   {name: "authentication", points: 43},   {name: "profile page", points: 11},   {name: "shopping cart", points: 24},   {name: "shopping history", points: 15},   {name: &qu

Simple code: Immutability

Immutability is a special thing that in my mind deserves a short explanation and praise. If you're familiar with functional programming you surely recognice the concept of immutability because it's a key ingredient of the paradigm. In the world of object oriented programming it's not as used and as easy to use approach but there are ways to incorporate immutability to parts of the code and I strongly suggest you to do so. Quick intro to immutablity The basic idea of immutability is unchangeable data.  Lets take a example. We have a need to modify a object's property but because the object is immutable we can't just change value but instead we make a copy of the object and while making the copy we provide the new value for the copy. In code it looks something like this. val pencil = Product(name = "Pencil", category = "Office supply") val blackMarker = pencil.copy(name = "Black marker") The same idea can be applied in functions and metho