Skip to main content

Dedicated time for learning Python at work

In the spring of 2019 I had the opportunity to use some paid work time for learning something new.
I decided to spend the given time to brush up on my Python knowledge. I had some experience in programming with Python but not much and I didn't have a understanding of Python conventions or ecosystem.

Limited time frame

I had a limited time frame that was split to four sessions. In addition to the time given for each session I spent at least the same amount of time on preparing each session.

First session, the basics

It was quite hard to find a resource that summarised Python basics on a sufficient level but I managed to find Alex Martinelli's slides Python for Programmers from 2007 that contained exactly what I was looking for.
Even though the slides are from over a decade ago and the Python version was 2.x at that time all the information is still applicable to current Python 3.x version as is or with minor changes.

Second session, testing in Python

Python has a good support for automated tests and it wasn't too hard to find two good resources where to learn. First I read a short introduction to Python's unit testing libraries from the Hitchhiker's guide to Python. After that I went through a longer, more profound, tutorial from Real Python.

Third session, functional programming in Python

I knew that Python supported functional programming concepts and the best resource that I could find was Python's own documentation that also explained some of the gotchas I ran into in my earlier Python programming experiments e.g. map function returns a iterator not a list or set or what ever was the input's type.

Fourth and final session, asynchronous programming in Python

With the rise of FRP and the Reactive Manifesto I thought that introducing myself to Python's async IO would be a good idea. For me the Real Python's tutorial on async IO was the easiest to understand and I think it's quite comprehensive.

Syllabus for Python for programmers

  1. Basics, Alex Martinelli's slides http://www.aleax.it/goo_py4prog.pdf 
  2. Testing, the Hitchhiker's guide to Python https://docs.python-guide.org/writing/tests/ and Real Python's getting started with testing in Python https://realpython.com/python-testing/ 
  3. Functional programming, Python's own documentation https://docs.python.org/3.7/howto/functional.html 
  4. Async IO, Real Python's tutorial on async IO https://realpython.com/async-io-python/

Conclusion

It took me around 6 hours to read and somewhat understand the contents of all the resources of the sessions. I already knew Python's syntax and had a solid understanding of other programming languages and I knew all the concepts that were covered.

I haven't worked with Python since the sessions but next time that I will, I'll first browse through these resorces.

Comments

Popular posts from this blog

Simple code: Immutability

Immutability is a special thing that in my mind deserves a short explanation and praise. If you're familiar with functional programming you surely recognice the concept of immutability because it's a key ingredient of the paradigm. In the world of object oriented programming it's not as used and as easy to use approach but there are ways to incorporate immutability to parts of the code and I strongly suggest you to do so. Quick intro to immutablity The basic idea of immutability is unchangeable data.  Lets take a example. We have a need to modify a object's property but because the object is immutable we can't just change value but instead we make a copy of the object and while making the copy we provide the new value for the copy. In code it looks something like this. val pencil = Product(name = "Pencil", category = "Office supply") val blackMarker = pencil.copy(name = "Black marker") The same idea can be applied in functions and metho

Simple code: Readability

Readability, understandability, two key incredients of great code. Easier said than done, right? What one person finds easy to read and understand another one finds incomprehensible. This is especially true when programmers have different levels of understanding on various subjects e.g. object oriented vs. functional or Node.js vs. Java. Even though there are obvious differences between paradigms and programming ecosystems there are some common conventions and ways to lower the barrier. Different approaches It's natural that in programming things happen sequentally e.g. you can have a list of objects and you need to do various things to the list like filter some values out and count a sum of the remaining objects based on some property. With the given list const stories = [   {name: "authentication", points: 43},   {name: "profile page", points: 11},   {name: "shopping cart", points: 24},   {name: "shopping history", points: 15},   {name: &qu

Simple code: Unit tests

Unit tests are the developers number one safety net. Let that sink in. This is the number one reason for writing unit tests. Unit tests are written by developers for developers to ensure that the code works as expected and handles happy and sad paths correctly. With enough unit test coverage the tests enable a safe environment for refactoring and rewriting code. Unit test scope Unit test should test a single thing, a method or function call and it should test only one use case within. In other words a unit test should test a function with a single input. This is a important guideline to understand. When a unit test tests a function with single input it makes the test isolated, repeatable and predictable. Example of good tests: @Test fun findsAddress() {   val address = findAddress("Stevens street 35", "Southport", "Australia")   assertThat(address).isNotNull() } @Test fun doesNotFindAddress() {   val address = findAddress("Stevens street 697", &q