Skip to main content

Simple code: Immutability

Immutability is a special thing that in my mind deserves a short explanation and praise.

If you're familiar with functional programming you surely recognice the concept of immutability because it's a key ingredient of the paradigm. In the world of object oriented programming it's not as used and as easy to use approach but there are ways to incorporate immutability to parts of the code and I strongly suggest you to do so.

Quick intro to immutablity

The basic idea of immutability is unchangeable data. 

Lets take a example.

We have a need to modify a object's property but because the object is immutable we can't just change value but instead we make a copy of the object and while making the copy we provide the new value for the copy. In code it looks something like this.


val pencil = Product(name = "Pencil", category = "Office supply")
val blackMarker = pencil.copy(name = "Black marker")


The same idea can be applied in functions and methods by thinking in terms of not changing the existing data. Functions have a input and a output. To achieve immutability you just have to make sure that what ever is your input it's never changed.

Let's take another example.

We want to increment a integer by one. Traditional mutating version is simply count++. Immutable version is a increment function that takes the current count as a input and as a output it should return the input + 1 without modifying the input object. The immutable function would look something like this.

fun increment(count: Int): Int {
  return count + 1
}


Immutability is such a important concept because when we don't modify the existing data values but instead make copies of the data in new variables we don't introduce state changes within the code and we can always trust that once we have given a value to some object it will always have that same value and nothing else. With these presumptions we can write predictable, testable and readable code.

Next part

In the next part I'll be writing about unit tests.

Popular posts from this blog

Sharing to help myself

It's been a while since my last post but I have a good excuse. I've been in a new customer project (well new for me) for two months now and have absorbed a lot of new information on the technology stack and the project itself. This time I'll be sharing a short post about sharing code and how it can help the one who's sharing the code. I'll be giving a real life example of how it happened to me. My story Back when I was implementing first version of my simple-todo REST-service I used Scala and Play framework for the service and specs2 for testing the implementation. Since then I've done a few other implementations of the service but I've continued to use specs2 as a testing framework. I wrote about my implementation and shared the post through various services and as a result someone forked my work and gave me some pointers on how I could improve my tests. That someone was Eric Torreborre  the man behind specs2 framework. I didn't take his ref

DIY home automation, new generation

I've had my DIY home automation system for controlling outlets and reading sensor data running for about two years now. The system has been working fine and I haven't had any need to touch the code since I added the sensor reading to it, until a few months back. Need for new functionality Few months ago I got a new IoT toy for a lend from a friend until I'd get my own toys, a ruuvitag sensor beacon. Ever since I found the ruuvitag for the first time from kickstarter I had the idea of getting a bunch of ruuvitags and adding their weather station sensor readings as part of my home automation system. The original home automation backend included only tellstick compatible devices and was written in Python, and in my mind it was kind of a hack. The ruuvitag beacons communicate via BLE i.e. Bluetooth Low Energy and that meant that I needed to add functionality to read the beacon data via bluetooth. I found a ruuvitag Python library and initially thought that I'd just